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In this paper, magnetohydrodynamic flow (MHD) of a nonofluid over a stretching cylinder
is investigated numerically. The Differential Quadrature Method (DQM) is applied for so-
lving the governing equations. The influence of relevant parameters such as the magnetic
parameter, the solid volume fraction of nanoparticles and the type of nanofluid on the flow,
heat transfer, Nusselt number and skin friction coefficient is discussed. Also, comparison
with the published results is presented. The results show that the Nusselt number increases
with growth in the volume fraction coefficient and Reynolds number but decreases with the
magnetic parameter.
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1. Introduction

Magnetohydrodynamics can be regarded as a combination of fluid mechanics and electro-
magnetism, that is, behaviour of an electrically conducting fluid in the presence of magnetic
and electric fields. The study of magnetohydrodynamic (MHD) flow has received a great deal of
research interest due to its importance in many engineering applications such as plasma studies,
MHD power generators, petroleum industries, cooling of nuclear reactors, boundary layer control
in aerodynamics and crystal growth (Harada and Tsunoda, 1998; Shang, 2001).
Many investigations have been done on the flow past a moving flat plate or a stretching

sheet in the presence of a transverse magnetic field, and a good amount of literature has been
generated on this problem (Ishak et al., 2006; Mahapatra and Gupta, 2001).
Examples of such technological applications are hot rolling, wire drawing, glass-fibre and

paper production, drawing of plastic films, metal and polymer extrusion and metal spinning
(Magyari and Keller, 1999). In all these cases, a study of the flow field and heat transfer can be
of significant importance since the quality of the final product depends to a large extent on the
skin friction coefficient and the surface heat transfer rate. The heat removal strategies in many
engineering applications such as cooling of electronic components rely on natural convection
heat transfer due to its simplicity, minimum cost, low noise, smaller size and reliability. In
most natural convection studies, the base fluid has a low thermal conductivity, which limits
the heat transfer enhancement. However, the continuing miniaturization of electronic devices
requires further heat transfer improvements from the energy saving viewpoint (Aminossadati
and Ghasemi, 2009). An innovative technique which uses a mixture of nanoparticles and the base
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fluid was first introduced by Choi (1995) in order to develop advanced heat transfer fluids with
substantially higher conductivities. The resulting mixture of the base fluid and nanoparticles
having unique physical and chemical properties is referred to as a nanofluid. It is expected
that the presence of nanoparticles in the nanofluid will increase the thermal conductivity and,
therefore, substantially enhance the heat transfer characteristics of the nanofluid. Convectional
heat transfer fluids, including oil, water, and ethylene glycol mixture are poor heat transfer
fluids, since the thermal conductivity of these fluids plays an important role in determining the
coefficient of heat transfer between the heat transfer medium and the heat transfer surface (Ho
et al., 2008).

Mathematical modelling is a vantage point to reach a solution in an engineering problem,
so the accurate modelling of nonlinear engineering problems is an important step to obtain
accuratre solutions (Zolfagharian et al., 2014a,b,c, 2015; Misagh et al., 2014).

Most differential equations of engineering problems do not have exact analytical solutions, so
approximation and numerical methods must be used. Recently, some different methods have been
introduced to solving these equations, such as the Variational Iteration Method (VIM) (Ghase-
mi et al., 2012), Homotopy Perturbation Method (HPM) (Ghasemi et al., 2013; Mohammadian
et al., 2015), Parameterized Perturbation Method (PPM) (Ghasemi et al., 2015c), Differen-
tial Transformation Method (DTM) (Ghasemi et al., 2014a,c; Hatami et al., 2015), Homotopy
Analysis Method (HAM) (Ziabakhsh and Domairry, 2009; Ziabakhsh et al., 2010), Adomian De-
composition Method (Ghasemi et al., 2012), Modified Homotopy Perturbation Method (MHPM)
(Ghasemi et al., 2014d), Least Square Method (LSM) (Ghasemi et al., 2014c, 2015b; Darzi et al.,
2015), Collocation Method (CM) (Ghasemi et al., 2015a; Atouei et al., 2015), Galerkin Method
(GM) (Ghasemi et al., 2015d), and Optimal Homotopy Asymptotic Method (OHAM) (Vata-
ni et al., 2014; Valipour et al., 2015). Also, the Differential Quadrature Method (DQM) is a
numerical technique for solving differential equations. It was first developed by Bellman et al.
(1972). Afterwards, it was improved by Shu (2000). The magnetohydrodynamic natural convec-
tion boundary-layer flow on a sphere in a porous medium was studied numerically using the
Differential Quadrature Method (DQM) by Moghimi et al. (2011). The boundary-layer natural
convection flow on a permeable vertical plate with thermal radiation and mass transfer was
investigated when the plate moved in its own plane by Talebizadeh et al. (2011). They solved
the governing equations by means of an excellent analytical method called Homotopy Analysis
Method (HAM) and a higher-order numerical method, namely the Differential Quadrature Me-
thod (DQM). Hatami and Ganji (2014) applied the Differential Transformation Method with the
Padé approximation (DTM-Padé) and the Differential Quadrature Method (DQM) for the mo-
tion of a particle in a forced vortex. They showed that the results of the DQM were in excellent
agreement with the numerical forth-order Runge-Kutta solution.

Ghasemi et al. (2016a) applied the Differential Quadrature Method (DQM) to find an ac-
curate solution for blood flow analysis in femoral and coronary arteries. They showed that the
results of the DQM were in excellent agreement with the numerical Crank Nicholson Method
(CNM).

Application of the Differential Quadrature Method (DQM) for boundary layer flow over a
flat plate with slip flow and constant heat flux surface condition was studied by Moghimi et
al. (2013). Wang (1988) studied the steady flow of a viscous and incompressible fluid outside
of a stretching hollow cylinder in an ambient fluid at rest. Ishak et al. (2008) investigated the
flow and heat transfer of a viscous and incompressible electrically conducting fluid outside of
a stretching cylinder in the presence of a constant transverse magnetic field. The problem is
governed by a third-order nonlinear ordinary differential equation that leads to exact similarity
solutions of the Navier-Stokes equations.

The main aim of this paper is to simulate the problem of the flow of a nanofluid outside of
a stretching cylinder in the presence of magnetic field by DQM and to compare the obtained
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results with those of Ishak et al. (2008), which represent the influence of adding nanoparticles
to the base fluid. Also, the effects of some parameters such as the solid volume fraction of
nanoparticles, type of the nanofluid and the magnetic parameter on velocity and temperature
profiles are examined.

2. Formulation of the problem

Consider a steady laminar flow of an incompressible electrically conducting fluid (with electrical
conductivity σ) caused by a stretching tube of radius a in the axial direction in the fluid at
rest as shown in Fig. 1, where the z-axis is measured along the axis of the tube and the r-axis
is measured in the radial direction. It is assumed that the surface of the tube is at constant

Fig. 1. Physical model and coordinate system

temperature Tw and the ambient fluid temperature is T1, where Tw > T1. We also assume that
the uniform magnetic field of intensity B0 acts in the radial direction and that the effect of the
induced magnetic field is negligible, which is valid when the magnetic Reynolds number is small.
The viscous dissipation, Ohmic heating and Hall effects are neglected as they are also assumed
to be small. The fluid is a water based nanofluid containing different types of nanoparticles:
Cu, Al2O3 and TiO2. It is assumed that the base fluid and the nanoparticles are in thermal
equilibrium and no slip occurs between them. The thermo physical properties of the nanofluid
are given in Table 1

Table 1. Thermo-physical properties of water and nanoparticles (Oztop and Abu-Nada, 2008)

ρ [kg/m3] Cp [J/(kgK)] k [W/(mK)] β [1/K]

Pure water 997.1 4179 0.613 21

Copper (Cu) 8933 385 401 1.67

Silver (Ag) 10500 235 429 1.89

Alumina (Al2O3) 3970 765 40 0.85

Titanium Oxide (TiO2) 4250 686.2 8.9538 0.9

(see Oztop and Abu-Nada, 2008). On the above assumptions, the boundary layer equations
governing the flow, and the concentration field can be written in dimensional form as
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Subject to the following boundary conditions

u = 0 w =Ww T = Tw at r = a

w → 0 T → T∞ as r→∞
(2.2)

where u and w are the velocity components along the r and z axes, respectively, Ww = 2cz
where c is a positive constant, and a is a constant. Further, ν, ρ, T and α are the kinematic
viscosity, fluid density, fluid temperature and thermal diffusivity, respectively. It is necessary to
mention that the magnetic term in Eq. (2.1)3 (in the r direction) is neglected because it does
not affect the flow dynamics in perpendicular situations and can be absorbed by the pressure
term.
The effective density ρnf , the effective dynamic viscosity µnf , the heat capacitance (ρCp)nf

and the thermal conductivity knf of the nanofluid are given as (see Aminossadati and Ghasemi,
2009)

(ρCp)nf = (ρCp)f (1− ϕ) + (ρCp)sϕ
knf
kf
=
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)

ρnf = ρf (1− ϕ) + ρsϕ µnf =
µf

(1− ϕ)2.5

(2.3)

Here, ϕ is the solid volume fraction, µf is the dynamic viscosity of the basic fluid, ρf and ρs are
the densities of the pure fluid and nanoparticle, respectively. (ρCp)f and (ρCp)s are the specific
heat parameters of the base fluid and nanoparticle, kf and ks are the thermal conductivities
of the base fluid and nanoparticle, respectively. Following Wang (1988), we take the similarity
transformation

u = −ca
f(η)
√
η

w = 2cf ′(η)z η =
( r

a

)2
θ =
T − T∞
Tw − T∞

(2.4)

where the prime denotes differentiation with respect to η. Substituting Eq. (14) into Eqs. (2.1)2
and (2.1)4, we get the following ordinary differential equations

1
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(2.5)

where Re = ca2/(2νnf ) is the Reynolds number and M = σB
2
0a
2/(4νnfρnf ) is the magnetic

parameter. νnf is the kinematic viscosity of nanofluid. Boundary conditions (2.2) become

f(1) = 0 f ′(1) = 1 θ(1) = 1

f(∞)→ 0 θ(∞)→ 0
(2.6)

The pressure can now be determined from Eq. (2.1)3 in the following form

p− p∞
ρcv

= −
Re

η
f2(η) − 2f ′(η) (2.7)

The physical quantities of interest are the skin friction coefficient and the Nusselt number, which
are defined as follows

Cf =
τw
ρWw/2

Nu =
aqw

k(Tw − T∞)
(2.8)
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Furthermore, τw and qw are the skin friction and the heat transfer from the surface of the tube,
respectively, and are given as

τw = µ
(∂w

∂r

)

r=a
qw = −k

(∂T

∂r

)

r=a
(2.9)

where k is the thermal conductivity. Considering variables (2.4), we get

Cf
Rez

a
= f ′′(1) Nu = −2θ′(1) (2.10)

3. Differential Quadrature Method (DQM)

The differential qquadrature method (DQM) is a rather efficient numerical method for rapid
solution of linear and nonlinear partial differential equations (Bellman et al., 1972). Compared
with the conventional methods such as the finite element and finite difference methods, the DQM
requires less computer time and storage.

In this study, a polynomial expansion based differential quadrature, as introduced by Quan
and Chang (1989), is applied for solving the problem. Several attempts have been made by
researchers to develop polynomial based differential quadrature methods. One of the most useful
approaches is the one that uses the following Lagrange interpolation polynomials as test functions

gk =
M(x)

(x− xk)M (1)(xk)
k = 1, 2, . . . , N (3.1)
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By applying the above equation at N grid points, the following algebraic formulations to compute
the weighting coefficients are developed
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where A(1) and A(2) denote the weighting coefficients of the first and second order derivatives of
the function f(r) with respect to the r direction. N is the number of grid points chosen in the
r direction. The differential quadrature approximation can be easily extended from the above
formulation to other coordinates. The first order derivatives in the two-dimensional formulation
are approximated by
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And the second order derivatives can be approximated by:
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where A(1) and B(1) denote the weighting coefficients of the first order derivatives; A(2) and
B(2) denote the weighting coefficients of the second order derivatives of the function f(r, z) with
respect to the r and z-directions, respectively; N and P are the number of grid points chosen
in the r and z-directions, respectively.

4. Results and discussion

Equations (2.5) along with their boundary conditions are solved numerically by using the DQM.
After applying this method, the influence of several non-dimensional parameters, namely the
Reynolds number Re, Prandtl number Pr, nanoparticles volume fraction ϕ and magnetic para-
meter M , have been investigated. Validating the numerical results obtained in this study, the
case when the volume fraction coefficient is zero (ϕ = 0) has been considered and compared
with the previously published results in Tables 2 and 3. These tables present numerical values
of the skin friction coefficient in terms of f ′′(1) and the Nusselt number Nu in terms of −θ′(1)
along with the results reported by Ishak et al. (2008), which show an excellent agreement with
the achieved results in the present study.

Table 2. Values of the skin friction coefficient for several values of M and Re at Pr = 6.2

M
Re = 1 Re = 5

Present work Ishak et al. (2008) Present work Ishak et al. (2008)

0 −1.17849 −1.1780 −2.41745 −2.4174

0.01 −1.18431 −1.1839 −2.41990 −2.4199

0.05 −1.20708 −1.2068 −2.42965 −2.4296

0.10 −1.23454 −1.2344 −2.44174 −2.4417

0.50 −1.42693 −1.4269 −2.53523 −2.5352

Table 3. Values of the Nusselt number for several values of M and Re at Pr = 6.2

M
Re = 1 Re = 5

Present work Ishak et al. (2008) Present work Ishak et al. (2008)

0 2.05857 2.0587 19.1185 19.1587

0.01 2.05715 2.0572 19.1184 19.1586

0.05 2.05158 2.0516 19.1179 19.1581

0.10 2.04487 2.0449 19.1174 19.1576

0.50 1.99806 1.9978 19.1129 19.1530

Figure 2 shows the effect of volume fraction coefficient ϕ on velocity distribution for Re = 5.
It is noticed that the Prandtl number Pr gives no effect to the velocity as can be seen from
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Eq. (2.5)1. The velocity curves show that the rate of transport is considerably reduced with an
increase of ϕ. In all cases, the velocity vanishes at some large distance from the surface of the
tube.

Fig. 2. Velocity profiles for various values of ϕ (Re = 5, M = 5, Pr = 6.2)

Figure 3 presents temperature profiles for various values of ϕ when Pr = 6.2 and Re = 5,
and the nanoparticle is Cupper. It is obvious that the temperature increases as ϕ increases,
but it decreases as the distance from the surface increases, and finally vanishes at a some large
distance from the surface. Consider that ϕ = 0 represents pure water like what is presented by
Ishak et al. (2008). It is clear that the heat transfer in the present case is more than the case
when the fluid is pure water.

Fig. 3. Temperature profiles for various values of ϕ (Re = 5, M = 5, Pr = 6.2)

Figure 4a exhibits the skin friction coefficient profiles Cf for various values of the Reynolds
number Re as M is constant. It is observed that the magnitude of the skin friction coefficient
increases as Re increases. Figure 4b represents the skin friction coefficient profiles Cf for various
values of M when the Reynolds number Re is constant. It can be seen that the magnitude of
the skin friction coefficient grows as M increases.

Furthermore, it is clear from both Figs. 4a,b that the skin friction coefficient increases with
an increase in the volume fraction coefficient. The same behavior can be observed for the Nusselt
number, i.e. growing Re increases the temperature gradient and, in turn, increases the Nusselt
number. And an increase in M decreases the Nusselt number, which is obvious from Figs. 5a,b.
Also, it is clear that the Nusselt number increases with an increase in the volume friction
coefficient.

After the velocity f ′(η) is obtained, the pressure p in terms of (p− p∞)/(ρcv) can be found
by using Eq. (2.7). The numerical results are shown in Fig. 6a forM = 2, ϕ = 0.1 and Re = 1, 5
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Fig. 4. Skin friction coefficient for various values of (a) Re and ϕ (M = 2, Pr = 6.2), (b) M and ϕ
(Re = 5, Pr = 6.2)

Fig. 5. Nusselt number for various values of (a) Re and ϕ (M = 2, Pr = 6.2), (b) M and ϕ
(Re = 5, Pr = 6.2)

Fig. 6. Pressure distribution obtained from Eq. (2.7) for various values of (a) Re (ϕ = 0.1, M = 2,
Pr = 6.2), (b) ϕ (Re = 10, M = 2, Pr = 6.2)

and 10. All curves show that p→ p∞ far away from the surface η →∞. Further, Fig. 6b shows
the pressure curve for different values of ϕ when Re = 10 and M = 2. It is clear from this figure
that bigger values of ϕ result in slower algebraic decay. In other words, if ϕ = 0.2, sufficient
decay of (p− p∞) takes place at higher values of η than the case when ϕ = 0.

Figures 7a and 7b represent f ′(η) and θ(η) curves, respectively, for different types of nano-
particles, namely, Cu, Al2O3 and TiO2 when ϕ = 0.1, M = 5, Pr = 6.2, and Re = 5. The figure
shows that by using different types of nanofluids, values of the velocity and temperature change,
i.e. we can say that the sheer stress and the rate of hate transfer change by using different
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types of nanofluids. This means that the nanofluids will be important in the cooling and heating
processes.

Fig. 7. (a) Velocity profiles and (b) temperature profiles for various values of nonoparticles (ϕ = 0.1,
Re = 5, M = 5, Pr = 6.2)

5. Conclusions

A steady two dimensional flow of an electrically conducting incompressible nanofluid due to
stretching cylindrical tube is studied in the present work. Similarity solutions are obtained
for a linearly stretching tube with a constant surface temperature, and the achieved ordinary
differential equations are solved numerically by applying the Differential Quadrature Method
(DQM). Effects of the volume fraction coefficient, magnetic parameter and Reynolds number
on the flow and heat transfer characteristics have been examined. It can be concluded that the
magnitude of the skin friction coefficient increases with the volume fraction coefficient, magnetic
parameter and Reynolds number, while it is constant with the Prandtl number. The Nusselt
number, also, increases with the volume fraction coefficient and Reynolds number but decreases
with the magnetic parameter.
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